波多野结衣毛片-乳色吐息在线观看-国产伦子伦对白视频-性做久久久-狠狠干2019-黄色裸体片-美女无遮挡免费网站-国产91熟女高潮一区二区-懂色av蜜臀av粉嫩av分享-小h片在线观看-台湾佬在线-日韩激情在线播放-欧日韩不卡在线视频-波多野结衣中文字幕一区-天天操夜夜草

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

亚洲五月婷婷 | 怡红院一区二区三区 | 国产一区一区 | 亚洲黄色一区二区 | 91成人福利 | 国产乱子伦精品无码码专区 | 国产一级片在线播放 | 双乳被四个男人吃奶h文 | 无码日韩精品一区二区 | 男人天堂av网 | 五月天久久婷婷 | 欧美日韩免费一区二区 | 美女一区二区三区 | 痴汉电车在线观看 | 色婷婷成人 | 国产第一页在线观看 | 99激情网 | 日本天天操 | 精品国产网站 | 丁香花电影在线观看免费高清 | 91视频官网 | 污网站免费在线观看 | 中文字幕精品无 | 欧美激情精品久久久久 | 美女扒开腿免费视频 | 成人福利院 | 黄色亚洲网站 | 吃瓜网今日吃瓜 热门大瓜 天天射天天色天天干 | 911国产视频 | 久久精品人妻一区二区三区 | 日本草逼视频 | 亚洲一区在线免费观看 | 美女扒开尿口让男人桶 | 国产91免费在线观看 | 亚洲欧美一区二区三区情侣bbw | 999久久久精品 | 男女做网站| wwwwxxxx欧美 | 国产资源免费 | a v视频在线播放 | 国产13页| 在线观看黄网站 | 久久久成人av| 色人天堂| 日本一区二区在线看 | 美女黄色影院 | 六月综合激情 | 久射久 | 伊人久久影院 | a黄色一级片 | 国产一区二区免费 | 日韩一级不卡 | 老司机深夜福利在线观看 | 国产精品久久一区 | 国产 欧美 自拍 | 中文字幕丝袜 | 毛片aaaaa| 成人av资源网 | 亚洲综合色婷婷 | 蜜臀av免费在线观看 | 男人午夜av | 奇米影视在线 | 亚洲色图2 | 亚洲深夜福利视频 | 激情 亚洲 | www.久久伊人 | 欧美在线播放视频 | 熟妇熟女乱妇乱女网站 | 热热色国产 | 亚州一级 | 无码人妻黑人中文字幕 | 无码人妻一区二区三区一 | 9l视频自拍九色9l视频成人 | 青青草福利视频 | 91超薄肉色丝袜交足高跟凉鞋 | 狠狠躁夜夜躁人人爽天天高潮 | 欧美精品在线观看视频 | 激情内射人妻1区2区3区 | 国产黄色在线免费观看 | 日本资源在线 | 婷婷五月综合久久中文字幕 | 久久精品专区 | 亚洲国产图片 | 丁香婷婷综合激情 | 黄久久久| 涩涩成人网 | 在线操| 日韩一级影片 | 色四虎 | 国产精品揄拍100视频 | 亚洲天堂第一区 | 四虎国产| 国产18精品乱码免费看 | 亚洲色图欧美视频 | 国产亲伦免费视频播放 | 中文精品无码中文字幕无码专区 | 99热这里有精品 | 色视频免费观看 | 久久精品丝袜高跟鞋 | www中文字幕在线观看 | 免费观看在线观看 | 久久青草免费视频 | 国产精品99久久久久 | 九九九九国产 | 3344成人| 午夜色婷婷 | 97伦伦午夜电影理伦片 | 激情视频激情小说 | 国产在线网站 | 黄色一区二区视频 | 久久伊人精品视频 | 欧美a级片在线观看 | 日韩欧美三级 | 国产在线一区视频 | 深夜老司机福利 | 久久综合五月天 | 中文字幕亚洲欧美日韩在线不卡 | 色呦呦网站在线观看 | 视频一区日韩 | 依依成人综合网 | 亚洲最大成人av | 日本一区二区三区免费视频 | 国产又黄又猛又粗又爽 | 亚洲一区a| 超碰人人人人 | 精品久久综合 | 国产精品a级 | 性一交一乱一伧老太 | 欧美成人福利视频 | 黄色在线播放网站 | 免费看a视频 | 黄色国产片 | 性高潮视频在线观看 | 亚洲人精品| 男女做爰猛烈刺激 | 国产色综合天天综合网 | 这里只有精品视频在线 | 久久久男人的天堂 | 久久久国产精品一区二区三区 | 国产无码精品一区二区 | 91 在线观看 | 日朝毛片| 中文字幕首页 | 欧美一级视频在线观看 | 亚洲黑丝在线 | jizz18国产| 日韩人妻精品无码一区二区三区 | 日韩不卡高清 | 日本加勒比一区 | 黑人玩弄人妻一区二区三区 | 国产精品高清无码在线观看 | 久久久久无码国产精品一区李宗瑞 | 夜夜操天天爽 | 夫妻啪啪呻吟x一88av | 国产精品男女 | 丰满大乳少妇在线观看网站 | 欧美色女人 | 99热精品在线播放 | 在线一级片 | 欧美性猛交xxxx | 国产精品第六页 | 欧美日韩丝袜 | 午夜精品福利视频 | 秋霞欧美在线观看 | 日本一区不卡 | 国产真实乱在线更新 | 精品人妻无码一区二区三区 | 欧美大喷水吹潮合集在线观看 | 成全世界免费高清观看 | 日韩一级一区 | 亚洲欧美强伦一区二区 | 欧美丰满少妇人妻精品 | 久久夜色精品国产欧美乱 | 日本美女性生活视频 | 午夜理伦三级做爰电影 | 国产婷婷一区二区三区久久 | 亚洲成人高清 | 精品第一页 | 成人激情视频在线观看 | 性大片潘金莲裸体 | 伊人超碰在线 | 超碰123 | 少妇特黄a一区二区三区 | 日韩精品在线视频观看 | 中文字幕日本在线 | 天堂成人国产精品一区 | 国产aaa | 日韩欧美麻豆 | 成年人色片 | 国产一级特黄 | 91们嫩草伦理 | 久草高清视频 | 日韩女优在线视频 | 欧美精品四区 | 久久久999精品视频 性感美女福利视频 | 精品无码在线观看 | 免费在线观看网址入口 | 日韩一区二区三免费高清在线观看 | 222aaa | 国产三级麻豆 | 日本韩国欧美一区 | 欧美性猛交xxxxx水多 | 欧美日韩国产精品 | 成年人在线播放 | 人妻丝袜一区二区三区 | 欧美在线观看不卡 | 日韩大尺度视频 | 日韩精品中文字幕在线观看 | 成人v精品蜜桃久一区 | 99精品自拍 | 欧美日韩一区二区三区视频 | 动漫av在线免费观看 | 久草视频播放 | 原创av| 伊人久久久 | 日韩av在线一区二区 | 一级黄色大片免费看 | 变态另类ts人妖一区二区 | 97潮色 | 毛片一区二区三区 | 欧美色图第一页 | 国产一级aa大片毛片 | 国产伦精品一区二区三区高清版禁 | 日韩欧美久久 | 操www| 麻豆av网 | 在线观看的免费 | 91看片在线看 | 97av视频| 在线成人| 亚洲AV无码片久久精品 | 欧美春色 | 日韩不卡一区 | 国产v片| 日韩大片av | 久久成人精品一区二区 | 国产精品99久久久久久久 | 超碰人人做 | 欧美日韩在线免费观看 | 男女三级视频 | 揄拍成人国产精品视频 | 麻豆视频污 | av电影在线播放 | 一区二区精品视频在线观看 | 在线免费观看成年人视频 | 三级黄色小视频 | 人乳videos巨大吃奶 | 欧美激情图区 | 久久成人小视频 | 午夜亚洲aⅴ无码高潮片苍井空 | 成人国产一区二区三区精品麻豆 | 天天干夜操 | 不卡日本| 91青青草 | 国产wwwwwww| 亚洲色图 欧美 | 亚洲人成在线免费观看 | av在线不卡一区 | 男女无遮挡xx00动态图120秒 | 激情久久网站 | 麻豆传媒在线观看视频 | 日本中文字幕视频 | 亚洲美女网站 | 免费无遮挡无码永久在线观看视频 | av爽妇网 | 超碰在线98 | 中文字幕免费播放 | 日韩在线精品视频一区二区涩爱 | 国产一级性生活 | 中文字幕69 | 欧美不卡视频在线观看 | 欧美福利电影 | 秋葵视频污 | 亚洲系列| 秋霞视频在线 | aaa级黄色片 | 国产精品久久影视 | 麻豆影视在线播放 | 久久中文网 | 欧美123区| 亚洲一二三四 | 男人天堂99 | 欧美色图在线观看 | 欧美日韩一区二区三区电影 | 久久对白 | 日本三级理论片 | 亚洲13p| 国产精品国产三级国产在线观看 | 综合国产在线 | 蜜芽在线视频 | 韩国三级视频在线 | 少妇av一区二区三区 | 久久免费视频观看 | 摸丰满大乳奶水www免费 | 久久精品无码一区二区三区毛片 | 日本视频免费在线 | 国产哺乳奶水91在线播放 | av在线三区 | 视频一区亚洲 | 久久精品国产电影 | 女裸全身无奶罩内裤内衣内裤 | 美女张开双腿让男人捅 | av在线网址观看 | 一区二区三区日韩 | 亚洲爱情岛论坛永久 | 黄网在线免费观看 | 激情九月天 | 澳门久久| 视频一区 国产 | 久久久久久福利 | 催眠调教后宫乱淫校园 | 久久av导航 | 97在线看 | 一级大片免费观看 | 色不卡| 国产精品无码粉嫩小泬 | av成人动漫 | 日韩精品久久 | 欧美日韩中文字幕一区二区 | 成人免费视频网站在线观看 | 五月婷婷激情综合网 | 亚洲激情成人 | 五个女闺蜜把我玩到尿失禁 | 色综合成人 | 国产a国产片 | 欧美日韩在线免费 | 欧美在线一二三区 | 韩国精品av | 亚洲一区二区在线观看视频 | 亚洲最大激情网 | 天天天天躁天天爱天天碰2018 | 超碰超碰超碰超碰 | 狠狠撸狠狠干 | 97人人澡人人爽人人模亚洲 | 国产精品调教 | 欧美天天色 | 亚洲精品中文字幕在线 | 免费av看片| 中文字幕人妻一区二区 | 欧美丰满bbw | 午夜av一区 | 久久天天躁狠狠躁夜夜av | 亚洲第一精品在线 | 日韩成人影视 | 国产精品夜夜爽 | 国产中文字幕精品 | 中文字幕无码乱码人妻日韩精品 | 国产精品女同一区二区 | 实拍女处破www免费看 | 日批在线播放 | 国产色一区 | 黄色片aaaa| 日韩av成人在线 | 成全影视在线观看第8季 | 欧美日韩a级 | 无码一区二区三区 | 精品久久国产字幕高潮 | 日韩欧美视频在线 | 国产成人综合自拍 | 国产情侣酒店自拍 | 国产精品亚洲一区 | av免费在线网站 | 中文天堂在线观看 | 毛片在线免费观看视频 | 欧美日韩在线第一页 | 国产精品久久久久久妇女6080 | 亚色中文字幕 | 香蕉久久夜色精品国产使用方法 | 国产黄色片子 | 中文字幕在线国产 | 三级欧美韩日大片在线看 | 日韩精品人妻中文字幕 | 欧美一区二区在线视频 | 青青草原国产视频 | 原创av| 欧美久久一区 | 中国av一区二区 | 羞羞软件 | 免费成人美女在线观看. | 91成人在线观看喷潮动漫 | 久久久久9999 | 黄网站在线观看视频 | 91av短视频| 午夜精品久久久久久久99老熟妇 | 欧日韩视频 | 欧美一区二区三区的 | 免费黄色在线视频 | 免费精品| 天天插天天搞 | 欧美人吸奶水吃奶水 | 不卡影院| 在线视频观看 | 特黄特色免费视频 | 国产精品自拍小视频 | 四虎影院在线视频 | 蜜臀在线观看 | 超碰在线中文字幕 | 国产乱人乱偷精品视频 | 一区二区三区视频在线播放 | 91香蕉嫩草 | 91激情捆绑调教喷水 | 大黑人交xxx极品hd | 狼人综合伊人 | 日美一级片 | 亚洲视频在线播放免费 | 涩涩视频软件 | 国产另类ts人妖一区二区 | 精品一区视频 | 国产精品一区二区在线免费观看 | 日韩国产一区二区三区 | 秋霞影院av| 亚洲国产成人精品一区二区三区 | 午夜激情四射 | 午夜在线网站 | 蜜臀久久 | 秋霞电影一区二区 | 亚洲图片欧美视频 | 神马九九 | www.youjizz.com日本| 精品无码国产污污污在线观看 | 我和公激情中文字幕 | 不卡视频免费在线观看 | 理论片午午伦夜理片影院99 | 久久在线免费视频 | 成人av日韩| av在线免费网站 | 91伊人久久| 第一福利视频 | 亚洲精品大全 | 狠狠欧美| 日本国产精品视频 | 亚洲综合社区 | 狠狠干五月天 | 国产农村老头老太视频 | 国产免费专区 | 国产精品zjzjzj在线观看 | 中文字幕免费在线看线人动作大片 | 夜夜草导航 | 亚洲欧美视频一区 | av青草 | 天天av天天 | 日产精品一区 | 免费成人小视频 | 动漫美女被吸乳奶动漫视频 | 欧美另类日韩 | 一本一道人人妻人人妻αv 国产一区二区在线视频观看 | 男人的天堂欧美 | 男人干女人视频 | 国语av在线 | 国产精品视频成人 | 天天射网| 亚洲高清色图 | 一区二区播放 | 动漫美女被吸乳奶动漫视频 | 瑟瑟视频在线免费观看 | 中文字幕网站在线观看 | 日本色呦呦 | 动漫3d精品一区二区三区乱码 | 成年人久久 | 妺妺窝人体色www婷婷 | 日韩女女同性aa女同 | av网站免费在线 | 日韩六区| 亚色中文 | 丰满熟女一区二区三区 | 老妇高潮潮喷到猛进猛出 | 国产成人一级片 | 日本天堂网在线 | 国产日批| av手机免费在线观看 | 人妻精品一区二区三区 | 亚洲 欧美 激情 小说 另类 | 99热99| 国产成人免费 | 好色综合 | 男人的天堂你懂的 | 国产一区二区久久 | а√天堂资源官网在线资源 | 免费毛片视频网站 | 蜜桃在线一区二区 | 狠狠久久| 成人午夜视频一区二区播放 | 欧美成欧美va | 伊人9 | 韩国三级中文字幕 | 完美搭档在线观看 | 美女黄色免费网站 | 欧美色图亚洲色 | 成年男女免费视频 | 特大黑人巨交吊性xxxxhd | 国产乱国产乱老熟300部视频 | 香蕉视频一区二区 | 国产情侣一区 | 精品www久久久久久奶水 | 色图综合网 | 豆花av| 91久久精品日日躁夜夜躁欧美 | 日本免费一区二区三区四区 | 日韩色在线 | 人人妻人人澡人人爽精品日本 | 国产精品福利小视频 | 超碰xxx| 亚州色图欧美色图 | 人妻在线日韩免费视频 | 欧美亚洲黄色 | 天天射美女| 手机看片1024日韩 | 成人欧美精品 | 丰满少妇高潮久久三区 | 亚洲美女屁股眼交8 | 国产精品久久久亚洲 | 日日躁夜夜躁 | 亚洲热在线 | 区一区二在线观看 | 岛国精品视频 | 一出一进一爽一粗一大视频 | 亚洲va久久久噜噜噜久久天堂 | 欧美日韩性视频 | 日本高清视频网站 | 久久人| 久久精品视频免费 | 国产精品毛片一区二区三区 | 加勒比精品 | 一本视频| 国产a免费| 无套内谢大学处破女www小说 | 亚洲在线免费视频 | 青青草原在线免费 | 色乱码一区二区三区熟女 | 日韩porn | 久久久久久久久久久久久久久 | 日本精品一区二区在线观看 | 热99精品| 韩国美女av | 天天操夜夜骑 | 美女扒开腿让男人捅 | av一区三区 | 亚洲3p| www.一区二区三区 | 91丝袜国产在线观看 | 日本网站免费观看 | 色婷婷网 | h官场少妇第三部分 | 免费视频精品 | jizz少妇| 久久久久久久久免费看无码 | 久久国产成人精品av | 在线亚洲天堂 | 中文字幕在线观看第二页 | 无码人妻精品一区二区三应用大全 | 一区二区精品国产 | 国产精品久久久亚洲 | 国产精品国产自产拍高清av | 国产精品乱码久久久 | 激情网婷婷| 亚洲人吸女人奶水 | 欧美日韩一卡二卡 | 三级精品在线 | 拍摄av现场失控高潮数次 | 免费观看毛片视频 | 麻豆av电影在线观看 | av黄色免费观看 | 亚洲一区二区在线播放 | 久久精品午夜 | 3344av| 日本精品国产 | 波多在线观看 | 欧美性一区二区 | 欧美激情三级 | 国产77777| 免费的理伦片在线播放 | 一区二区三区在线视频播放 | 综合五月 | 小h片在线观看 | 国产成人在线免费视频 | 久操新在线 | 国产图区 | 日韩日b | 久操热线| 中文字幕亚洲欧美日韩高清 | 少妇视频在线 | 亚洲白浆| 欧美在线xxx | 91超碰在线 | 成人性做爰aaa片免费 | 国产毛片毛片毛片毛片毛片 | 激情综合站 | 成人免费短视频 | 人妻一区二区三区四区 | 在线观看不卡的av | 夜夜天堂| 欧美色吊丝 | 国产巨乳在线观看 | 欧美日韩在线播放 | 欧美在线视频精品 | 亚洲日日干 | 亚洲综合成人网 | 午夜剧场在线 | 在线观看污污网站 | 国产综合激情 | 黄色在线播放视频 | 91高清免费视频 | 国产在线视频不卡 | 免费在线看黄的网站 | 激情五月综合色婷婷一区二区 | 国产一区二区三区精品在线观看 | 国产婷婷色综合av蜜臀av | 黄色一级网 | 国产精品久久777777毛茸茸 | 女人扒开屁股让男人桶 | 91精品婷婷国产综合久久 | 中国女人真人一级毛片 | 又黄又爽在线观看 | 日韩精品欧美在线 | 亚洲 视频 一区 | 性视频免费看 | 久久久av片 | 成人国产精品久久 | 思思久久99 | 蜜桃久久久久 | 国产精品国产三级国产传播 | 久久免费公开视频 | 一级黄色免费看 | 国产一区二区精品在线 | 爱豆国产剧免费观看大全剧集 | 五月花婷婷 | 毛片av在线观看 | 网站av在线| 夜夜操狠狠操 | 伊人院 | 狂野欧美| 亚洲精品一区二区三区精华液 | 国产成人一区二区三区免费看 | 粉色视频网站 | 91网站永久免费看nba视频 | 国产男女猛烈无遮挡a片漫画 | 成人依依网| 最近中文字幕av | 欧美一区二区三区久久妖精 | 亚洲国产91 | 国产a∨精品一区二区三区仙踪林 | 97成人在线观看 | 91免费看. | 风韵少妇spa私密视频 | 高潮一区二区三区乱码 | 精品久久综合 | 中文字幕在线视频一区 | 男人在线网站 | 黄色大片免费观看 | 五月综合视频 | 国产精品久久久久久久久久久久久久久久 | 国产美女网站视频 | 国产精品国产馆在线真实露脸 | 欧美亚洲韩国 | 中文在线日韩 | 免费伊人网 | 亚洲黄色大全 | 久久永久视频 | 午夜寂寞影院在线观看 | 午夜特级毛片 | 久久精品一二三区 | 免费视频91蜜桃 | 少妇淫片 | 日韩在线导航 | 九色在线 | 日本一区二区三区在线观看视频 | 亚洲草逼视频 | 亚洲色图28p | 亚洲国产精品无码久久 | 99热官网| 天天爽天天爽 | 不卡中文字幕 | 99免费视频 | 黄色资源在线观看 | 亚洲美女网站 | 黄色一极视频 | 性爱免费视频 | 日韩久久网| 成人在线激情 | 你懂的91| 精品久久久久久久久久久久久 | 国产人妻黑人一区二区三区 | 成人午夜免费视频 | 日韩城人网站 | 日日摸日日添日日碰9学生露脸 | 黄网站色| 国产精品天天看 | 爽爽av| 午夜大片网 | 在线黄色av| 狠狠干天天操 | 91玉足脚交嫩脚丫在线播放 | 欧美日韩成人在线观看 | 体内精69xxxxxx | 99re6这里只有精品 | 国产伦精品一区二区三 | 成年人黄色小视频 | 中国免费黄色 | 国产精品久久久久久中文字 | 亚洲激情一区二区三区 | 天堂中文字幕在线观看 | 99精品在线免费观看 | 在线观看一级片 | 日韩人成 | 国产毛片一区二区三区va在线 | 女人的毛片 | 色一情一乱一区二区三区 | 最新av免费| 亚洲精品999 | 在线视频中文字幕 | 男女aa视频 | 91精品国产综合久久久蜜臀九色 | 女人裸体又黄 | 成人高清 | 日批黄色| 欧美日韩 一区二区三区 | 高清乱码免费 | 最新天堂av | 久久精品播放 | 美女尿尿网站 | 中文字幕999 | 91精品国产综合久久久蜜臀 | 成人在线观看小视频 | a在线| 欧美性猛交 | 国产综合日韩 | 伊人55| www.日韩在线| av在线免费网站 | 中文字幕综合网 | av中文字幕免费在线观看 | 熟妇高潮精品一区二区三区 | 欧美一卡 | 国产精品日韩欧美大师 | 五十路japanese55丰满 | 久久麻豆av| 国产永久免费观看 | 黄色在线一区 | 夜夜天天操 | 高潮疯狂过瘾粗话对白 | 人人舔 | 丝袜老师办公室里做好紧好爽 | 国产私密视频 | 最近免费中文字幕中文高清百度 | 天天操天天操天天干 | 亚洲视频小说 | 狠狠操五月天 | 伊人久久大香线 | 中文字幕中出 | 免费网站91 | 亚洲欧美另类国产 | 久久av免费看 | 国产精品入口麻豆九色 | 午夜在线播放视频 | 日本不卡一区在线观看 | 免费毛片一区二区三区 | 亚洲精品乱码久久久久久国产主播 | 国产精品无码一区二区三区三 | 俺来也在线视频 | 国精产品一区二区三区 | 日韩女优一区 | 欧美一级精品 | 2019自拍偷拍 | 国产在线观看黄 | 亚洲一区二区福利 | 一级黄色播放 | 秋霞亚洲| 日韩爱爱网 | 国产精品午夜福利视频234区 | 蜜桃va| av免费在线观| 欧美不卡在线视频 | 久久刺激 | 国产久久精品 | 日本亚洲网站 | 91网站观看 | 黑人乱码一区二区三区av | 久久精品亚洲一区二区 | 久操视频免费 | 中文在线观看免费网站 | h网站在线看 | 国产区在线 | 欧美黄色录像视频 | 成人福利网址 | 亲嘴扒胸摸屁股免费视频日本网站 | 成人欧美一级特黄 | 欧美 日本 国产 | 黄色网久久 | 久久久免费观看 | 好男人在线视频 | www.96av| 国产无人区码熟妇毛片多 | 超碰人人射| 网爆门在线 | av中文字幕在线免费观看 | 狠狠操你 | 九九超碰 | 特级a级片 | 久久九九国产 | 天堂视频在线观看免费 | 日韩av无码中文字幕 | 国产网站黄色 | 91n视频 | 亚洲成人黄色网 | 884aa四虎影成人精品一区 | 99热导航| 中文字幕视频在线 | 国产精品边吃奶边做爽 | 91免费网站在线观看 | 人人妻人人澡人人爽人人精品 | 欧美级毛片 | 黄在线视频 | 性xxxx欧美老肥妇牲乱 | 德国性经典xxxx性hd | 三级视频在线看 | 国产精品成av人在线视午夜片 | 色综合综合网 | 日本黄色三级网站 | 午夜精品一区二区三区免费视频 | 麻豆av在线免费观看 | 免费在线观看黄色片 | 高清18麻豆| 久久久久中文字幕亚洲精品 | 国产精品一级二级 | 一区二区三区不卡在线观看 | 日韩免费高清视频 | 欧美日韩精品一区二区在线播放 | 亚洲欧美成人综合 | 99黄色片| 黑森林福利视频导航 | 国产成人97精品免费看片 | 日韩视频一区二区三区在线播放免费观看 | 欧美热热 | 国产真实乱人偷精品视频 | 中文字幕在线观看视频网站 | 九九视频免费看 | 精品久久无码中文字幕 | 亚洲va久久久噜噜噜久久天堂 | 99久久99久久久精品棕色圆 | 亚洲一区二区三区高清视频 | 男人天堂av在线播放 | 国产福利片一区二区 | 爱情岛论坛自拍亚洲品质极速最新章 | 色av网| 亚欧av在线 | 岛国av在线播放 | 欧美激情一区二区视频 | 91大神久久 | 一道本视频在线 | 国产精品亚洲第一 | 亚洲视频日韩 | 亚洲色图制服诱惑 | 国产又色又爽 | 欧美做受喷浆在线观看 | 精品午夜福利在线观看 | 国产成人精品一区二三区四区五区 | 很黄的网站在线观看 | 亚洲鲁鲁| 国产精品久久久久影院老司 | 精品自拍视频 | 色肉色伦交av色肉色伦 | 国产精品黄 | 婷婷综合网 | 久久在线观看 | www.欧美在线观看 | 黄色大片黄色大片 | 丝袜脚交国产在线观看 | 久久中文字幕网 | 国产日韩欧美高清 | 成人国产毛片 | 国产乱国产乱300精品 | 婷婷午夜 | 婷婷激情综合 | 特种兵之深入敌后高清全集免费观看 | 国产精品电影院 | 国产一级片子 | 色综合久久网 | 国产综合精品一区二区三区 | 香蕉视频1024 | 91中文在线观看 | 97在线影院 | 国产精品人成 | 精品热 | 毛片xxx | 日日骚av| av不卡免费观看 | 射影院| 啪视频在线观看 | 黄色片网站免费看 | 成人毛片18女人毛片免费 | 草免费视频 | 青青久久久 | 毛片国产精品 | 日韩欧美日本 | 午夜视频 | 亚洲午夜无码久久久久 | www日韩| 美女色综合 | 国产又大又长又粗 | 国产婷婷色综合av蜜臀av | 美女下部无遮挡 | 精品三级国产 | 日本一卡二卡在线 | 欢乐谷在线观看免费播放高清 | 成人av观看| 欧美日韩人妻精品一区 | 久久伊人色 | 在线天堂www在线国语对白 | 亚洲不卡免费视频 | 污污免费观看 | 国产又色又爽又黄又免费 | 亚洲19p| japanesexxxx日本妞 | 国产精品国产三级国产专区52 | 中文字幕第二区 | 在线亚洲欧美 | 国产日韩一区 | 91最新入口 | 牛av| 中文字幕日本在线观看 | 亚洲精品视频一区二区 | 中文字幕一区二区久久人妻网站 | 在线电影一区 | 一区二区三区视频在线 | 黄色工厂在线观看 | 亚洲色图 美腿丝袜 | 国产又大又黄又粗 | 自拍偷拍五月天 | av片观看 | 一区二区三区欧美 | 欧美www视频 | 欧美freesex黑人又粗又大 | 看免费黄色片 | 久久这里都是精品 | 一区二区三区国产精品 | 蜜桃91丨九色丨蝌蚪91桃色 | 久色电影 | 性感美女毛片 | 天堂一二三区 | 欧美一区在线看 | 日本亲子乱子伦xxxx50路 | 日韩视频免费看 | 日本道中文字幕 | 日韩黄色免费网站 | 日本视频免费在线 | 中文字幕无码乱码人妻日韩精品 | 亚洲系列中文字幕 | 福利二区视频 | 国产sm调教视频 | 日韩欧美一区二区三区四区 | 动漫美女揉胸 | 免费看成年人视频 | 末路1997全集免费观看完整版 | 午夜痒痒网 | 亚洲国产麻豆 | 秋葵视频在线 | 天天天天干 | 久久久97 | 久久精品日韩 | av免播放器 | 96av在线| 黄色网页免费看 | 一级性生活黄色片 | 做爰无遮挡三级 | 91网站免费 | 1024精品一区二区三区日韩 | 女同av在线| 日本黄色三级视频 | 日韩免费高清 | 翔田千里x88aⅴ | 99热.com| 少妇献身老头系列 | 色偷偷888欧美精品久久久 | 国产午夜精品久久久久 | 一区二区三区国产视频 | 欧美 日韩 国产一区 | 亚洲成人免费在线观看 | 亚洲免费观看高清 | 51妺嘿嘿午夜福利 | 青青操原| 春色av | 日韩一区二区在线免费观看 | 自拍毛片| 名校风暴在线观看免费高清完整 | 国产美女作爱视频 | 探花国产精品一区二区 | 国内偷拍久久 | 黄色小说图片视频 | 国产又粗又长又黄视频 | 欧美激情久久久 | 欧美经典一区 | 香蕉视频在线免费播放 | 日韩在线精品视频 | 最近中文字幕免费mv视频7 | 天天艹日日干 | 欧美精品一二三区 | 中文字幕自拍 | 蜜臀av性久久久久蜜臀aⅴ麻豆 | 伊人老司机| 日韩av电影中文字幕 | 成人观看网站 | 六月激情网 | 久久无毛 | 色天使在线视频 | 中文一区二区 | 51精品国产人成在线观看 | 一级性生活黄色片 | 久久精品国产亚洲AV成人婷婷 | 美女超碰| 国产在线观看网站 | 男女作爱免费网站 | 亚洲欧美黄色片 | 亚洲va韩国va欧美va精品 | 日韩午夜在线视频 | 五月天看片 | 国产情侣91 | 久久久999久久久 | 狠狠干欧美 | 伊人网成人 | 恶虐女帝安卓汉化版最新版本 | 国产91综合 | 涩涩亚洲| 黄色免费在线观看视频 | 天美麻花果冻视频大全英文版 | 99热这里只有精品2 久久黑人 | 日本成人在线不卡 | 毛片日本| 日韩最新视频 | 欧美一区二区免费视频 | 一级做a爱片 | 青青草色视频 | 成人在线影视 | 被黑人啪到哭的番号922在线 | 中文字幕日产av | 又黄又爽的免费视频 | av福利片| 视频一区 国产 | 国产99re| 欧美色图激情小说 | 欧美日韩va | 精品国产人妻一区二区三区 | 日韩有码视频在线 | 在线免费观看毛片 | 毛片国产 | 国产在线视视频有精品 | 男女午夜视频在线观看 | 欧美成人精品一区二区 | 波多野结衣在线观看一区二区 | 免费午夜激情 | 午夜偷拍福利 | 日韩一级视频 | 麻豆视频在线 | 天堂网一区 | 岛国精品在线播放 | 国产精品免费在线播放 | 一级爱爱片 | 男女插插插视频 | 国产精品久久久久久久9999 | 国产农村妇女精品一二区 | 中文在线免费观看 | 三级a做爰全过程 | 免费成人91 | www.人人草 | aaa在线| 欧美群交射精内射颜射潮喷 | 撸大师av| 黄色肉肉视频 | 久久不射视频 | 精品中文在线 | 超碰av在线播放 | 蜜臀久久99精品久久久画质超高清 | 福利片在线播放 | 肥臀浪妇太爽了快点再快点 | 国产999在线观看 | 91精品国产亚洲 | 97国产成人无码精品久久久 | 亚洲人毛茸茸 | 精品人妻无码一区二区色欲产成人 | 午夜免费成人 | 秋葵视频成人 | 沟厕沟厕近拍高清视频 | 91中文字幕 | 亚洲涩涩 | 久久噜| 精品久久久久久久久久久久久久久久 | 亚洲区小说区图片区qvod | 打屁屁日本xxxxx变态 | 欧美日本韩国一区 | 激情的网站| 污片在线观看 | 免费无码又爽又黄又刺激网站 | 黄色在线观看av | 色牛av| 天堂一级片 | caoporm超碰| 91视频一区| 秋霞影院午夜 | 国产h视频在线 | 欧美老肥妇做.爰bbww视频 | 亚洲高清色 | 久久男人av | 丰满少妇一区二区 | 色姑娘综合| 日本久久网 | 夏目彩春娇喘呻吟高潮迭起 | 懂色av蜜臀av粉嫩av分享 | 欲乱美女 | 成年人在线观看视频网站 | 69re视频 | 天天摸天天操天天干 | 玩偶游戏在线观看免费 | 亚洲第三十七页 | 蜜桃av噜噜一区二区三区麻豆 | 国产精品边吃奶边做爽 | 精品五月天 | 爱搞逼综合 | 国产精久久久久久 | 一级特黄特色的免费大片视频 | xxx综合网| 久久久免费电影 | 欧美在线免费看 | 狼色网 | 又黄又骚的视频 | 天天干天天干天天 | 国产真人无遮挡作爱免费视频 | 干干干操操操 | 吃奶摸下的激烈视频 | 黄色网址在线免费观看 | 国产精品1区2区3区 不卡二区 | 午夜视频污 | 色一情一交一乱一区二区三区 | 国产三级在线观看完整版 | 亚洲综合精品视频 | 韩国美女av| 黑人干亚洲女人 | 91成人在线看 | 色偷偷网站 | 色欲AV无码精品一区二区久久 | 黄色成人免费网站 | 色综合狠狠 | 日韩av手机在线观看 | 99精品自拍 | 国产午夜一区二区三区 | 久久毛片网 | 国产亚洲视频在线 | 私密视频在线观看 | 国产18在线观看 | 大地av| 少妇扒开粉嫩小泬视频 | 污网站在线免费看 | 中文字幕一区二区三区又粗 | 三级黄色片免费 | 亚州 | 日韩欧美精品一区 | 欧美日韩在线一区二区三区 | 日本久久一级片 | 97视频在线 | 狠狠操免费视频 | 影音先锋欧美在线 | 假日游船 | 熟妇的味道hd中文字幕 | av电影中文字幕 | 欧美色噜噜 | 一本色道久久综合亚洲精品小说 | 成年人免费视频观看 | 日韩欧美一区二区在线观看 | 激情六月天婷婷 | 国产又白又嫩又爽又黄 | 制服丝袜在线视频 | 男人的天堂久久 | 中文精品久久久久人妻不卡 | 夜夜爽妓女8888视频免费观看 | 女女同性被吸乳羞羞 | 亚洲成人18 | 香蕉视频在线观看视频 | 一级欧美日韩 | 超碰日日夜夜 | 亚洲天堂av网 | 久久综合激情网 | 伦伦影院午夜理论片 | 欧美一区二区公司 | 日本少妇高潮 | 长河落日电视连续剧免费观看 | 精品99久久久久成人网站免费 | 91久久精品国产 | 欧美日韩中文在线观看 | 美女扒开内裤让男人桶 | 亚洲成人婷婷 | 双性尿奴穿贞c带憋尿 | 啪啪啪一区二区 | 快色污| 岛国片在线免费观看 | 亚洲永久免费网站 | 日韩久久综合 | 精品黄色片 | 香蕉91视频| www午夜视频| 国产秋霞 | 91网页入口 | 国产精品久久久一区二区 | 亚洲第二页 | 99久久婷婷国产一区二区三区 | 欧美另类精品 | 精产国品一区二区 | 日韩精品免费一区二区三区四区 | 免费麻豆视频 | 少妇高潮网站 | 99er热精品视频 | 国产美女福利 | 亚洲码在线观看 | 国产黄色成人 | 玖玖在线免费视频 | 亚洲AV无码成人精品区东京热 | 日韩女优网站 | 午夜一级大片 | 97国产精品久久久 | 喷水了…太爽了高h | 视频在线观看免费 | 无码国产精品一区二区免费式直播 | 国产色爽 | 橹图极品美女无圣光 | 成人听书哪个软件好 | 少妇又色又紧又爽又刺激视频 | 无码成人精品区在线观看 | 亚洲综合精品在线 | 欧美精品国产精品 | 黄色小说图片视频 | 长河落日电视连续剧免费观看 | 交专区videossex非洲 | 人妻中文字幕一区二区三区 | 免费播放毛片精品视频 | 91精选视频| 久久综合久久综合久久 | 色婷av| 毛片久久久 | 天天摸日日 | 色妇网 | 黄色视屏在线免费观看 | 欧美黑人又粗又大的性格特点 | 热玖玖 | 特种兵之深入敌后高清全集免费观看 | 欧美精品一二区 | 日批视频免费播放 | 欧美性色黄 | 日本一区二区在线播放 | 97av免费视频 | 亚洲欧洲在线视频 | 黄频在线免费观看 | 一边摸一边抽搐一进一出视频 | 亚洲超丰满肉感bbw 美女xx网站 | 国产老头户外野战xxxxx | 国内精品视频在线 | 亚洲福利一区二区 | 成人免费视频网 | 久久久欧洲 | 91n视频| av在线免费播放网站 | 欧美性猛交性大交 | 秋霞av鲁丝片一区二区 | 欧美黄色录像视频 | 天天干天天操天天 | 污污视频在线观看免费 | 成人依依| 前任攻略在线观看免费完整版 | www亚洲视频 | 亚洲综合图片区 | 男人的天堂a在线 | 精品人妻无码一区二区色欲产成人 | 国产欧美视频一区 | 乱淫的女高中暑假调教h | 免费看60分钟黄视频 | 国产一级片免费视频 | 污视频网站免费在线观看 | 又色又爽又黄无遮挡的免费视频 | 四川丰满妇女毛片四川话 | 欧美怡红院视频一区二区三区 | 国产深喉视频一区二区 | 黄色在线免费视频 | 天天干网 | www.超碰97 | 国产精品自产拍高潮在线观看 | 国产成人精品亚洲精品色欲 | 吻胸摸激情床激烈视频大胸 | 欧美精品videosex极品 | 骚狐网站 | 精品午夜一区二区三区在线观看 | 日日噜噜夜夜狠狠视频 | 苏晴忘穿内裤坐公交车被揉到视频 | 陪读偷伦初尝小说 | 欧美性大战久久久久久久蜜桃 | 呦呦在线视频 | 日韩美女性生活 | 手机在线免费观看av | 色婷婷六月 | 日韩成人久久 | 国产成人在线网站 | 99国产精品免费视频 | www.96av| 黄色成人在线 | 天天操天天艹 | 99在线无码精品入口 | 风间由美一区二区 | 毛片的网址 | 日本在线观看 | 亚洲国产精品一区二区久久hs | 免费黄色一级片 | 91亚洲免费 | 亚洲自拍偷拍图 | 无码人妻一区二区三区在线 | 香蕉网在线 | 一卡二卡三卡在线视频 | 开心激情综合 | 日韩一级二级三级 | 精品久久无码中文字幕 | 亚洲高清网站 | 久久国产精彩视频 | 国产美女激情视频 | 日本在线不卡一区 | 僵尸叔叔在线观看国语高清免费观看 | 亚洲乱码国产乱码精品 | 森林影视官网在线观看 | 热热热色 | 欧美无专区 | 天天躁日日躁aaaa视频 | www.国产黄色 | 国产盗摄一区二区 | 国产午夜福利精品 | 在线播放一区二区三区 | 法国极品成人h版 | 根深蒂固在线观看 | av国产片| 久久久久久久久久影院 | 亚洲精品久久久久久国 | 少妇人妻精品一区二区三区 | 亚洲小说图片区 | 成人欧美一区二区 | 污污免费观看 | 国产精品无套 | 91porn九色| 欧洲女同同性吃奶 | 久久精品视频中文字幕 | 成人国产精品久久久 | 五月激情综合网 | 91美女精品网站 | 无套内谢少妇高潮免费 | 免费看成人av | 久草福利资源 | 久久a久久 | 四虎啪啪 | 久久久久久久人妻无码中文字幕爆 | 午夜黄色av | 天天操天天玩 | 精品国产乱码久久久久久蜜臀网站 | 国产人妻一区二区三区四区五区六 | 91日韩精品 | 自拍偷拍五月天 | 欧美午夜影院 | 很污的网站 | 亚洲成人中文字幕 | 国产超碰人人 | 亚洲三级电影网站 | 在线激情小视频 | 亚洲精品乱码久久久久久9色 | 在线操 | 1024手机在线看片 | 性欧美1819性猛交 | 瑟瑟综合 | 毛片基地视频 | 亚洲精品无 | 国产91精品久久久久久久 | 欧美日韩精选 | 一级做a爰片 | 激情av小说 | 日日夜夜爱 | 久久二| 日韩精品极品视频在线观看免费 | h片在线观看视频 | 人人草人人干 | 成人试看120秒体验区 | 午夜激情视频在线 | jzzijzzij日本成熟少妇 | 91精品国产91久久久 | 一本色道久久综合亚洲精品小说 | 草逼网站 | 亚洲一区二区三区网站 | 欧美另类视频 | 成人网av | 亚洲欧美在线观看视频 | 人妻激情偷乱视频一区二区三区 | wwwxxx欧美| www中文字幕在线观看 | 女优一区二区三区 | 在线观看日批 | 亚洲国产精品视频一区 | 日韩精品一区二区三区视频在线观看 | 亚洲精品国产无码 | 日韩视频一区在线观看 | 成人免费视频观看 | 欧美激情亚洲综合 | 久久久久久久久久影视 | 亚洲av无码一区二区二三区软件 | 国产精品久久久久aaaa | jizz日本大全| 欧美成人久久久 | 99热成人| 国产喷水在线 | 特大黑人巨交吊性xxxx视频 | 熟女视频一区二区三区 | 蜜臀久久99精品久久久无需会员 | 亚洲视频图片 | 美女自拍视频 | 三级黄片毛片 | 久久国产乱子 | 中文字幕一区二区人妻在线不卡 | www在线观看免费视频 | 九九天堂网 | 对白刺激国产子与伦 | 成人在线小视频 | 国产精品99久久久久久宅男 | 国产极品999| 最近最新最好看的2019 | av片免费播放 | 91日本在线观看 | 成人短视频在线观看 | 三级在线免费 | 经典一区二区三区 | 精品欧美在线观看 | 日本三级视频在线播放 | 国产尤物视频在线观看 | 你懂的在线观看视频 | 精品无码一区二区三区电影桃花 | 色干综合 | 无码人妻精品一区二区蜜桃色欲 | 涩涩久久 | 日韩激情影院 | 牛牛av在线 | 国产黄色www | ass极品水嫩小美女ass | 俄罗斯porn| 国产3级 | 中文字幕一区二区三区四区五区 | 亚洲国产理论 | 露脸丨91丨九色露脸 | 毛片网在线观看 | 老熟妇高潮一区二区高清视频 | 欧美天天性影院 | 欧美你懂得 | 日韩欧美国产高清91 | 亚洲精品一区二区三区在线观看 | 美女被爆操网站 | 色播激情 | 欧美视频日韩 | 欧美高大丰满少妇xxxx | 日韩一区免费视频 | 日本精品在线视频 | 四季av综合网站 | 亚洲色图国产精品 | 日韩人妻无码一区二区三区99 | 日本十八禁视频无遮挡 | 国产精品乱码一区二区 | 中文字幕人成乱码熟女香港 | 国产极品视频 | 国产精品6 | 国产资源网站 | 久久一级大片 | 亲子乱aⅴ一区二区三区 | 色一情一乱一乱一区91av | 国产成人精品一区二区三区四区 | 中文字幕av专区 | 色激情五月 | 干欧美少妇 | 欧美日韩不卡一区二区 | 欧美专区一区 | 东北高大丰满bbbbzbbb | 天堂最新 | 91麻豆影院 | 俺也去在线视频 | 国产日韩在线视频 | 人妻中文字幕一区二区三区 | 丁香六月天婷婷 | 国产香蕉在线观看 | 国产精品18久久久久久无码 | 午夜伦伦电影理论片费看 | 日本做爰全过程免费看 | 国精产品一区一区三区免费视频 | 日韩免费在线观看视频 | 色香蕉在线| 丝袜中文字幕 | 99热这里只有精品2 久久黑人 | 欧美在线播放一区二区 | 乱视频在线观看 | 一区在线看 | 亚洲欧美日韩另类 | 欧美视频在线观看一区二区三区 | 精品乱人伦一区二区三区 | 亚洲污网站 | 麻豆91视频| 九九福利视频 | 亚洲va天堂va欧美ⅴa在线 | 天天撸天天操 | 亚洲一区二区三区成人 | 久久丫精品久久丫 | 夜色成人网 | 久久丫丫 | 亚洲国产一区二区三区a毛片 | 精彩视频一区二区 | 亚洲精品911 | 在线播放精品 | 91精品综合久久久久久五月天 | 香蕉视频网站在线 | 亚洲自拍在线观看 | 国产成人无码一二三区视频 | 日韩天天| 2019中文字幕在线视频 | 亚洲手机在线观看 | 青青草手机在线 | 国产伦精品一区二区三区四区免费 | 夏目彩春娇喘呻吟高潮迭起 | 一区二区三区黄色片 | 婷婷中文| 久久久免费 | 久久国产乱子伦精品 | 实拍女处破www免费看 | 久在线视频 | 日本天天色 | av资源在线播放 | 人妻洗澡被强公日日澡 | 色站综合| 免费大片黄在线观看视频网站 | 国产一区综合 | 亚洲综合激情 | 国产精品后入内射日本在线观看 | 国产亚洲精品av | 波多野结衣av在线播放 | 狠狠操天天操 | 亚洲国产一区二区三区四区 | 欧色丰满女同hd | 淫欲av| 娇妻被肉到高潮流白浆 | 91视频地址| 欧美成人三级 | 成人福利在线播放 | 久久国产网| 91网站大全| 亚洲激情av在线 | 亚洲人免费| 狼性av| 亚洲无毛| 26uuu精品一区二区 | 美国性生活大片 | 成人黄色在线观看 | 欧美用舌头去添高潮 | 美女涩涩网站 | 日本猛少妇色xxxxx猛叫 | 国产99在线视频 | 偷拍一区二区三区 | 亚洲伊人色| 亚洲综合一 | 国产中文字幕在线观看 | youjizz.com日本| 久久久久国产精品午夜一区 | 黄色片免费看 | 欧美一级淫片免费视频黄 | 国产片91 | 亚洲精品aa | 手机免费在线观看av | 五月天爱爱 | 日韩少妇裸体做爰视频 | 国产一级影院 | 51精产品一区一区三区 | 99热99| 国产大屁股喷水视频在线观看 | 日本在线观看 | 色播视频在线观看 | 茄子av| 在线观看毛片网站 | 99亚洲视频 | 国产精品自拍区 | 麻豆av在线 | 99热在线观看免费 | 国产日韩欧美综合在线 | 亚洲精品乱码久久久久久 | 视频一区在线播放 | 国产精品视频免费播放 | 欧美第三页 | 一边摸一边抽搐一进一出视频 | 精品国产一区二区三区av性色 | 国产污视频在线观看 | 国产精品久久精品 | 国产叼嘿视频 | 五色天婷婷 | 欧美黄色片 | 久久99久久久 | 天堂男人av| 涩涩网站入口 | 欧洲美女与动交ccoo | 国产精品资源在线 | 99久久久 | 麻豆91精品91久久久 | 久久久久噜噜噜亚洲熟女综合 | 国产精品二区一区二区aⅴ 狠狠鲁视频 | 激情五月婷婷综合 | 97精品一区二区三区 | 亚洲欧美日韩另类 | 午夜激情免费 | 久久99精品久久久 | 天天视频黄 | 一区二区三区人妻 | 日韩成人在线网站 | 免费观看av网站 | 中文资源在线播放 | 国产91综合一区在线观看 | 欧美一区免费观看 | 爱看av | 亚洲成人av片 | 日本人妖网站 | 国产精品mv| 天天干,夜夜爽 | 国产成人精品视频 | www国产无套内射com | 久久夜视频 | 国产乱码精品 | 乌克兰黄色片 | 亚洲欧美日韩另类 | 一级成人黄色片 | 91精品国产综合久久久久久 | 毛片av免费看 | 欧美性猛交xxxx乱大交退制版 | 中文字幕日韩在线观看 | av色站| 亚洲天堂美女视频 | 精品性久久 | 伊人22综合 | 日本三级一区二区三区 | 俄罗斯av片 | 最近最好的2019中文 | 日韩美女一级片 | 欧美成人短视频 | 欧美成人精品一区二区三区在线看 | 花房姑娘免费观看全集 | 国产伦精品一区二区三区在线 | 手机看片欧美日韩 | 免费a级片在线观看 | 日韩欧美一本 | 久久99视频免费 | 国产成人精品综合在线观看 | 美少妇av | 国产精品传媒在线 | 精品人妻一区二区三区浪潮在线 | 天天操综合 | 91视频免费观看网站 | 久久久久久久久久电影 | 婷婷调教口舌奴ⅴk | 国产区精品视频 | www.jizzjizz.com| 亚洲精品电影在线观看 | 人人cao | 黄色一级影片 | 国产又爽又黄无码无遮挡在线观看 | 国产人妻互换一区二区 | 99视频在线播放 | 国产精品黄色大片 | 一级黄色片欧美 | 国产高潮白浆 | 日本三级一区二区三区 | 丰满少妇xbxb毛片日本 | 国产精品亚洲一区 | 9l视频自拍蝌蚪9l视频 | 日韩不卡视频在线 | 秋霞在线观看视频 | 亚洲av电影一区 | 国产午夜无码视频在线观看 | 久久久香蕉 | 国产精品久久国产精麻豆96堂 | 特种兵之深入敌后 | 好大好爽视频 | 国产又黄又爽又色 | 亚洲成人高清在线 | 91毛片网站 | 亚洲草逼| 国产三级一区 | 99久久精品一区 | 亚洲欧美日韩偷拍 | 午夜影院在线播放 | 伊人网综合在线 | 中文字幕日韩一区 | 色欲av伊人久久大香线蕉影院 | 成全世界免费高清观看 | 岛国av一区二区三区 | www.日日夜夜| 91精品一区二区三区四区 | 欧美精品色呦呦 | 无码av免费精品一区二区三区 | 日本护士毛茸茸 | 潘金莲裸体一级淫片视频 | 日韩精品一二 | 国产草逼视频 | 视频在线观看你懂的 | 欧美成人精品一区二区三区在线看 | 国产精品一线天粉嫩av | 亚洲精品久久久久久无码色欲四季 | 91精品又粗又猛又爽 | 香蕉在线看 | 国产精品综合色区在线观看 | 欧美日本一区 | 久久精品10| 美少妇av | 男女交性视频 | 亚洲精品乱码久久久久99 | 国产精品无码无卡无需播放器 | 午夜影院福利社 | 在线观看免费视频 | 老熟妇一区二区三区 | 91久久久久久久 | 五月天亚洲色图 | www.色国产| 丰满少妇在线观看资源站 | 成人国产精品久久 | 香蕉精品在线 | 欧美国产日韩在线观看成人 | 亚洲精品鲁一鲁一区二区三区 | 美女黄色影院 | www.色妞 | 久久久久久亚洲精品 | 欧美日韩一区二区三区四区五区六区 | 男女污视频| 怡红院男人的天堂 | 九九在线精品视频 | 五月天婷婷在线观看 | 爱爱网视频| 少妇特殊按摩高潮惨叫无码 | 亚洲,国产,日韩,综合一区 | 日本美女一区 | 日韩中文视频 | 在线成人影视 | 亚洲色图网友自拍 | 俺来也av | 老司机午夜在线 | 成人福利视频网站 | 五月天激情开心网 | 国产精品后入内射日本在线观看 | 欧美另类videosbestsex | 日韩精品――色哟哟 | 午夜黄视频 | 黄色在线观看网址 | 亚洲网在线观看 | 婷婷中文 | 琪琪色网 | 中文字幕第27页 | 一边吃奶一边摸做爽视频 | 中文字幕在线天堂 | 啪啪.com | 国产做受网站 | av最新资源 | 久草一区二区 | 在线观看99 | 在线观看网址你懂的 | 欧美黄色短视频 | 美日韩在线视频 | 国产一级一级国产 | 麻豆亚洲av成人无码久久精品 | 九色视频网| 老师的肉丝玉足夹茎 | 国内精品小视频 | 男人日女人的网站 | 成人h动漫在线 | 人妻视频一区二区三区 | 韩国三级在线视频 | 国产精品国产成人国产三级 | 在线中文天堂 | 欧美一区二区三区公司 | 57pao国产精品一区 | 日本在线一级 | 有码中文 | 国产日产精品一区二区 | 自拍偷自拍亚洲精品播放 | 亚洲三区在线 | 亚洲成av人片在线观看无码 | 亚洲第一在线视频 | 男女视频在线 | 香蕉传媒| 国产精品久久久久久久久免费看 | 蜜桃成熟时李丽珍国语 | 少妇人妻偷人精品无码视频新浪 | 欧美精品三区 | 国内毛片视频 | 99久久成人 | 麻豆国产一区二区三区四区 | 国产精品久久久久久久久久直播 | 午夜影院a| 泰剧19禁啪啪无遮挡 | 伦理自拍 | 中文字幕第 | 日本免费色| 中文字幕69页 | 国产一级片 | 成人中文网 | 久久久青青草 | 老司机伊人 | 日韩欧美一二区 | 久久久久久久国产精品 | 亚洲最大的成人网站 | 亚洲成人黄色在线 | 精品一区二区三区中文字幕 | 日韩国产三级 | 亚洲免费视频一区二区三区 | 西西人体做爰大胆gogo | 成人免费视频国产免费网站 | 美色视频 | 91av视频在线观看 | 中文天堂在线视频 | 农村少妇久久久久久久 | 成年人在线视频网站 | 久久精品国产免费 | 久久久久久九九九九 | 性生交大片免费看狂欲 | 国产精品一二三四五 | 国产成人午夜高潮毛片 | 亚洲女人18毛片水真多 | 欧美一级做 | 国产精品久久无码 | 国产精品国产 | 日本裸体动漫 | 人人草人人澡 | 韩国毛片一区二区三区 | www欧美精品| 96久久久 | 中文字幕第一页亚洲 | 国产激情一区二区三区四区 | 亚洲欧美在线播放 | 日韩va在线 | 狠狠干2021 | 亚洲二区在线观看 | 久久99精品久久久久久三级 | 日韩av在线免费 | 中国国语农村大片 | 九九在线免费视频 | 国产一区二区播放 | 午夜两性网 | 国产精品一区二区在线观看 | 欧美综合视频在线观看 | 国产欧美一区二区在线 | 朱竹清到爽高潮痉挛 | 天天躁夜夜躁狠狠是什么心态 | 一二三区在线观看 | 中文字幕在线播放一区 | www.黄色网址.com| 在线一区二区三区四区 | www视频在线观看 | 欧美性一级片 | 欧洲av一区二区三区 | 第一页在线 | 麻豆影音 | 欧美二区视频 | 欧美日韩国产网站 | 欧美偷拍一区二区三区 | 一边摸内裤一边吻胸 | 天堂中文在线观看视频 | 亚洲精品国产无码 | japanese在线| 欧美在线视频一区二区 | 久久国产传媒 | www.伊人久久 | 亚洲视频免费在线 | 国产一级伦理片 | 国产成人在线免费观看视频 | 性生交大片免费看l | 日产精品久久久久 | 都市激情亚洲色图 | 日本特黄色片 | 冲田杏梨在线 | 日本不卡中文字幕 | 天天操天天干天天摸 | 久久99精品波多结衣一区 | 免费在线观看中文字幕 | 国产在线不卡视频 | 欧美成人免费在线视频 | 欧美成人乱码一区二区三区 | 中文字幕一区二区久久人妻网站 | 免费看黄色一级视频 | 美景之屋电影免费高清完整韩剧 | 男生吃小头头的视频 | 亚洲精品97久久 | www.天堂av.com | 秋霞午夜伦理 | 久久伊人一区二区 | 79日本xxxxxxxxx18 国产精品熟妇一区二区三区四区 | 人妻一区二区三区四区 | 黄色片免费播放 | 4444亚洲人成无码网在线观看 | 亚洲麻豆视频 | 亚洲一级av毛片 | 蜜桃一区二区三区 | 精品九九视频 | 美女狠狠干 | 91精品国产乱码久久久久久久久 | 免费网站av | 精品国产亚洲av麻豆 | 500部大龄熟乱视频 亚洲无码一区二区三区 | 秋霞电影一区二区 | 日日操夜夜 | 国产99久久久欧美黑人 | 黄色一级大片在线免费看产 | 亚洲自拍色图 | 伊人久久91| 日韩三级视频在线播放 | av日韩在线免费观看 | 色花堂在线 | 大尺度激情吻胸视频 | 国产精品第2页 | 国产精品第一区 | 国产无码精品在线观看 | 亚洲精品在线播放视频 | 国产男人的天堂 | 一级黄色免费观看 | 在线 色| 国产性生活网站 | 国产乱论 | 五月精品 | 中文av网站 | 色人阁婷婷| 在线观看福利视频 | 男人的天堂黄色 | 人人爱人人 | 国产1页| 欧美日韩国产在线播放 | 夜夜嗨网站 | 日本丰满少妇 | 欧美专区日韩专区 | 欧美日韩aa| 牛牛影视一区二区三区 | 激情国产视频 | 国产香蕉视频在线播放 | 亚洲最大福利视频 | av影音先锋 | 亚洲AV午夜精品 | www中文字幕 | 福利av在线 | 浴室里强摁做开腿呻吟男男 | 男人日女人网站 | 久久国内精品 | 伊人色影院 | 欧洲女性下面有没有毛发 | 欧美日韩国产第一页 | 最新中文字幕第一页 | 黄色裸体片| 激情成人av | 丰满人妻一区二区三区53号 | 欧美日韩在线视频免费播放 | 天天久久 | 中日韩精品一区二区三区 | 都市激情综合 | 日本大尺度做爰呻吟舌吻 | 国产精品自拍电影 | 中文字幕一区二区在线播放 | 日本女优在线看 | 亚洲第一免费网站 | 天堂网视频 | 懂色一区二区三区 | www.欧美国产 | 中文字幕免费高清视频 | 国产福利91精品一区二区三区 | 2019最新中文字幕 | 免费国偷自产拍精品视频 | 国产学生美女无遮拦高潮视频 | 午夜激情网站 | 伊人成年综合网 | 亚洲美女视频在线观看 |