亚洲综合另类小说色区丨三级特黄60分钟在线观看丨131美女mm爱做爽爽爽视频丨成人无码一区二区三区网站丨免费人成小说在线观看网站

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > Translating proteins into music, and back

Translating proteins into music, and back

 By turning molecular structures into sounds, researchers gain insight into protein structures and create new variations

Date:

June 26, 2019

Source:

Massachusetts Institute of Technology

Summary:

In a surprising marriage of science and art, researchers have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages. Then, reversing the process, they can introduce some variations into the music and convert it back into new proteins never before seen in nature.

Want to create a brand new type of protein that might have useful properties? No problem. Just hum a few bars.

 

In a surprising marriage of science and art, researchers at MIT have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages. Then, reversing the process, they can introduce some variations into the music and convert it back into new proteins never before seen in nature.

 

Although it's not quite as simple as humming a new protein into existence, the new system comes close. It provides a systematic way of translating a protein's sequence of amino acids into a musical sequence, using the physical properties of the molecules to determine the sounds. Although the sounds are transposed in order to bring them within the audible range for humans, the tones and their relationships are based on the actual vibrational frequencies of each amino acid molecule itself, computed using theories from quantum chemistry.

 

The system was developed by Markus Buehler, the McAfee Professor of Engineering and head of the Department of Civil and Environmental Engineering at MIT, along with postdoc Chi Hua Yu and two others. As described in the journal ACS Nano, the system translates the 20 types of amino acids, the building blocks that join together in chains to form all proteins, into a 20-tone scale. Any protein's long sequence of amino acids then becomes a sequence of notes.

 

While such a scale sounds unfamiliar to people accustomed to Western musical traditions, listeners can readily recognize the relationships and differences after familiarizing themselves with the sounds. Buehler says that after listening to the resulting melodies, he is now able to distinguish certain amino acid sequences that correspond to proteins with specific structural functions. "That's a beta sheet," he might say, or "that's an alpha helix."

 

Learning the language of proteins

 

The whole concept, Buehler explains, is to get a better handle on understanding proteins and their vast array of variations. Proteins make up the structural material of skin, bone, and muscle, but are also enzymes, signaling chemicals, molecular switches, and a host of other functional materials that make up the machinery of all living things. But their structures, including the way they fold themselves into the shapes that often determine their functions, are exceedingly complicated. "They have their own language, and we don't know how it works," he says. "We don't know what makes a silk protein a silk protein or what patterns reflect the functions found in an enzyme. We don't know the code."

 

By translating that language into a different form that humans are particularly well-attuned to, and that allows different aspects of the information to be encoded in different dimensions -- pitch, volume, and duration -- Buehler and his team hope to glean new insights into the relationships and differences between different families of proteins and their variations, and use this as a way of exploring the many possible tweaks and modifications of their structure and function. As with music, the structure of proteins is hierarchical, with different levels of structure at different scales of length or time.

 

The team then used an artificial intelligence system to study the catalog of melodies produced by a wide variety of different proteins. They had the AI system introduce slight changes in the musical sequence or create completely new sequences, and then translated the sounds back into proteins that correspond to the modified or newly designed versions. With this process they were able to create variations of existing proteins -- for example of one found in spider silk, one of nature's strongest materials -- thus making new proteins unlike any produced by evolution.

 

Although the researchers themselves may not know the underlying rules, "the AI has learned the language of how proteins are designed," and it can encode it to create variations of existing versions, or completely new protein designs, Buehler says. Given that there are "trillions and trillions" of potential combinations, he says, when it comes to creating new proteins "you wouldn't be able to do it from scratch, but that's what the AI can do."

 

"Composing" new proteins

 

By using such a system, he says training the AI system with a set of data for a particular class of proteins might take a few days, but it can then produce a design for a new variant within microseconds. "No other method comes close," he says. "The shortcoming is the model doesn't tell us what's really going on inside. We just know it works."

 

This way of encoding structure into music does reflect a deeper reality. "When you look at a molecule in a textbook, it's static," Buehler says. "But it's not static at all. It's moving and vibrating. Every bit of matter is a set of vibrations. And we can use this concept as a way of describing matter."

 

The method does not yet allow for any kind of directed modifications -- any changes in properties such as mechanical strength, elasticity, or chemical reactivity will be essentially random. "You still need to do the experiment," he says. When a new protein variant is produced, "there's no way to predict what it will do."

 

The team also created musical compositions developed from the sounds of amino acids, which define this new 20-tone musical scale. The art pieces they constructed consist entirely of the sounds generated from amino acids. "There are no synthetic or natural instruments used, showing how this new source of sounds can be utilized as a creative platform," Buehler says. Musical motifs derived from both naturally existing proteins and AI-generated proteins are used throughout the examples, and all the sounds, including some that resemble bass or snare drums, are also generated from the sounds of amino acids.

 

The researchers have created a free Android smartphone app, called Amino Acid Synthesizer, to play the sounds of amino acids and record protein sequences as musical compositions.

 

Story Source:

 

Materials provided by Massachusetts Institute of Technology. Original written by David L. Chandler. Note: Content may be edited for style and length.

 

Journal Reference:

 

Chi-Hua Yu, Zhao Qin, Francisco J. Martin-Martinez, Markus J. Buehler. A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence. ACS Nano, 2019; DOI: 10.1021/acsnano.9b02180

主站蜘蛛池模板: 欧美巨大极度另类| 亚洲熟妇丰满xxxxx| 日韩精品成人av在线观看| 麻豆视传媒精品av在线| 亚洲国产精品成人久久久| 国产又爽又黄又刺激的视频 | 久久精品无码免费不卡| 久久99亚洲精品久久久久| 9999国产精品欧美久久久久久| 中国老妇xxxx性开放| 亚洲人成网站在线观看69影院| 色欲综合久久中文字幕网| 欧美人与动人物牲交免费观看久久| 成人无码视频在线观看大全| 欧美人与物videos另类xxxxx| 中文乱码字幕高清一区二区| 国产呦交精品免费视频| 手机看片久久国产永久免费| 久久精品国产精品久久久| 妺妺窝人体色www聚色窝仙踪| 最新精品国偷自产在线下载| 国产精品亚洲a∨天堂| 亚洲国产精品无码中文在线| 国产精品自在线拍国产手青青机版| 人体内射精一区二区三区| 国产系列丝袜熟女精品视频| 少妇高潮av久久久久久| 性久久久久久久| 国产又大又硬又粗| 国产各种高潮合集在线观看| 人妻少妇精品专区性色av| 日本xxxx18野外无毒不卡| 日日麻批免费40分钟无码| 99精品国产自在现线10页| 日韩av无码午夜免费福利制服| 国产精品久久久久9999| 亚洲 日本 欧美 中文字幕| 人妻系列无码专区无码专区| 午夜免费啪视频| 精品欧美成人一区二区不卡在线| 亚洲一卡久久4卡5卡6卡7卡|